激光焊
核心原理
利用高能量密度激光束(功率密度 10⁶-10⁸W/cm²)聚焦于焊接区域,瞬间熔化母材形成熔池,无需填充材料或配合少量焊丝,通常辅以惰性气体(Ar)保护防氧化。
技术特点
优势:热输入极小(仅为气体保护焊的 1/10-1/5),变形可忽略;焊缝深宽比大(可达 10:1),精度高(缝宽 0.1-0.5mm);焊接速度快(可达 10-50m/min),适合薄壁件。
局限:设备昂贵(光纤激光器约数十万元),对装配精度要求(间隙需≤0.1mm);高反光材料(如铜、铝)能量吸收低,焊接难度大。
典型应用
航空航天薄壁结构、动力电池极耳、医疗器械、精密电子元件等对精度和变形要求严苛的场景。
激光 - 气体保护复合焊(主流复合工艺)
核心原理
激光束作为主要热源实现深熔,同时搭配气体保护焊(MIG/MAG)的焊丝填充,激光预热母材减少焊丝熔化阻力,气体保护熔池防氧化。
技术优势
互补短板:激光解决气体保护焊热输入大、精度低的问题;气体保护焊弥补激光对间隙敏感、高反光材料焊接困难的缺陷。
适用范围广:可焊材料涵盖碳钢、不锈钢、铝合金、钛合金,板厚范围扩展至 0.3-20mm。
效率与质量平衡:焊接速度比单一激光焊略低,但远高于气体保护焊,且焊缝强度、成形性更优。
典型应用
高铁车体铝合金焊接(板厚 3-8mm)、压力容器厚壁不锈钢焊接、汽车高强钢结构件焊接等。
气体系统
每日检查气瓶压力(低于 0.5MPa 时及时更换),减压阀需定期校准(每 6 个月一次),确保气体流量稳定(如 MIG 焊通常需 15-25L/min)。
气管需避免挤压、弯折,每周检查连接处是否漏气(用肥皂水涂抹接口,无气泡为正常),漏气会导致保护不足,增加焊缝缺陷。
日常操作与保养
工作前确认接地可靠(接地电阻≤4Ω),避免触电或设备故障。
停用超过 1 周时,需放空气管内残留气体,防止 moisture (水分)在管内凝结(尤其南方潮湿地区),避免焊缝产生气孔。
铝合金焊接后,需及时清理送丝系统残留的铝屑,防止铝氧化皮堵塞导管或磨损部件。

